Ralph Adams

Picture of Ralph Adams

Senior Research Fellow and Head of NMR in the Department of Chemistry
Email/Teams: ralph.adams@manchester.ac.uk
Tel: +44 (0) 161 306 0389

Research
Pure shift NMR spectroscopy
Matrix-assisted diffusion-ordered spectroscopy

Biography
I studied Chemistry at the University of York, completing the 4 year MChem course in 2005 which included a final year working in Analytical Methods Development in the R&D division of GlaxoSmithKline (Stevenage). The final year project, based on isomer separation in the synthetic route to Lapatinib, was supervised by Dr. Darsha Hindocha (GSK) and Prof. David Goodall (York).

I stayed in York to work towards a Ph.D in the research group of Prof. Simon Duckett in the Department of Chemistry and Prof. Gary Green at York Neuroimaging Centre (YNiC). My research centred around applications of hyperpolarisation with magnetic resonance imaging and I submitted my thesis in 2009. (BBSRC CASE Award BBS/S/D/2005/13210 funded by YNiC and training grant BB/B511894/1).

I was then subsequently appointed for 6 months and then a year on grants from Yorkshire Forward and Bruker respectively. These roles worked towards exploitation of the SABRE method, which was developed during my Ph.D, for hyperpolarised MRI applications and high field NMR measurements. I moved to Manchester at the end of 2010 to take up a post-doctoral research associate position working on Matrix Assisted Diffusion-ordered spectroscopy (MAD), supervised by Dr. Mathias Nilsson and Prof. Gareth Morris, an EPSRC project funded for three years. (EPSRC Grant Number EP/H024336/1)

I then moved into research in the area of pure shift NMR, and was a Researcher Co-Investigator on three year EPSRC Grant EP/L018500/1 "Improving NMR Resolution and Sensitivity - Simultaneously?".

I am now a Research Fellow in NMR spectroscopy, responsible for the NMR instrumentation and service within the School of Chemistry.

I have a keen interest in NMR methods; specifically, pulse sequence design, development and testing as well as implementation of new methods for the exploitation of spin states derived from hyperpolarised species.

Publications

Scopus and Google Scholar are usually more up to date than this list.

38. Ultrahigh-Resolution Diffusion-Ordered Spectroscopy. M. Foroozandeh, L. Castañar, L. G. Martins, D. Sinnaeve, G. Dal Poggetto, C. F. Tormena, R. W. Adams, G. A. Morris, M. Nilsson. Angew. Chem. Int. Ed. 2016, 55, 15579-15582
(available at Wiley).

37. Extraction of distance restraints from pure shift NOE experiments, L. Kaltschnee, K. Knoll, V. Schmidts, R.W. Adams, M. Nilsson, G.A. Morris, and C.M. Thiele, J. Magn. Reson. 271 (2016), 99-109

36. Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl N‐Oxide Lewis Base Catalysts, S. Staniland, R.W. Adams, J.J.W. McDouall, I. Maffucci, A. Contini, D.M. Grainger, N.J. Turner, and J. Clayden, Angew. Chem. 128 (2016), 10913

35. Real-time broadband proton-homodecoupled CLIP/CLAP-HSQC for automated measurement of heteronuclear one-bond coupling constants, I. Timári, L. Kaltschnee, M.H. Raics, F. Roth, N.G.A. Bell, R.W. Adams, M. Nilsson, D. Uhrín, G.A. Morris, C.M. Thiele, and K.E. Kövér, RSC Adv. 6 (2016), 87848

34. Exploring electronic effects on the partitioning of actinides (III) from lanthanides (III) using functionalised bis-triazinyl phenanthroline ligands, A.C. Edwards, C. Wagner, A. Geist, N.A. Burton, C.A. Sharrad, R.W. Adams, R.G. Pritchard, P.J. Panak, R.C. Whitehead, and L.M. Harwood, Dalton Tran. 45 (2016), 18102

33. Matrix‐assisted diffusion‐ordered spectroscopy: choosing a matrix, N.V. Gramosa, N. Ricardo, R.W. Adams, G.A. Morris, and M. Nilsson, Magn. Reson. Chem. 54 (2016), 815

32. Very broadband diffusion-ordered NMR spectroscopy: 19F DOSY, J.E. Power, M. Foroozandeh, P. Moutzouri, R.W. Adams, M. Nilsson, S.R. Coombes, A.R. Phillips, and G.A. Morris, Chem. Commun. 52 (2016), 6892

31. Increasing the quantitative bandwidth of NMR measurements, J.E. Power, M. Foroozandeh, R.W. Adams, M. Nilsson, S.R. Coombes, A.R. Phillips, and G.A. Morris, Chem. Commun. 52 (2016), 2916

30. White phosphorus activation by a Th (III) comple, A. Formanuik, F. Ortu, R. Beekmeyer, A. Kerridge, R.W. Adams, and D.P. Mills, Dalton Trans. 45, (2016), 2390 (NoLink)

29. Ultra-high dispersion NMR reveals new levels of detail, J.A. Aguilar, P. Kiraly, R.W. Adams, M. Bonneau, E.J. Grayson, M. Nilsson, A.M. Kenwright, and G.A. Morris, RSC Adv., 5 (2015), 52902 (NoLink).

28. Measuring couplings in crowded NMR spectra: pure shift NMR with multiplet analysis, M. Foroozandeh, R.W. Adams, P. Kiraly, M. Nilsson, and G.A. Morris, Chem. Commun., 51 (2015), 15410 (NoLink).

27. Controlled Synthesis of Nanoscopic Metal Cages, J. Ferrando-Soria, A. Fernandez, E.M. Pineda, S.A. Varey, R.W. Adams, I.J. Vitorica-Yrezabal, F. Tuna, G.A. Timco, C.A. Muryn, and R.E.P. Winpenny, J. Am. Chem. Soc. In Press (available at ACS)

26. Minimising Research Bottlenecks by Decluttering NMR Spectra, J.A. Aguilar, J. Cassani, M. Delbianco, R.W. Adams, M. Nilsson, and G.A. Morris, Chem. Eur. J. 21 (2015), 6623. (available at Wiley)

25. Real-time pure shift 15N HSQC of proteins: a real improvement in resolution and sensitivity, P. Kiraly, R.W. Adams, L. Paudel, M. Foroozandeh, J.A. Aguilar, I. Timári, M.J. Cliff, M. Nilsson, P. Sándor, G. Batta, J.P. Waltho, K.E. Kövér, and G.A. Morris, J. Biomol. NMR. 62 (2015), 43. (available at Springer)

24. Precise Measurement of Long-Range Heteronuclear Coupling Constants by a Novel Broadband Proton–Proton-Decoupled CPMG-HSQMBC Method, I. Timári, T.Z. Illyés, R.W. Adams, M. Nilsson, L. Szilágyi, G.A. Morris, and K.E. Kövér Chem. Eur. J. 21 (2015), 3472. (available at Wiley)

23. Pure shift NMR spectroscopy, R.W. Adams. eMagRes 2014 (available at Wiley)

22. “Perfecting” pure shift HSQC: full homodecoupling for accurate and precise determination of heteronuclear couplings, L. Kaltschnee, A. Kolmer, I. Timari, V. Schmidts, R.W. Adams, M. Nilsson, K.E. Köver, G.A. Morris, and C.M. Thiele. Chem. Commun. In Press (available at RSC)

21. Natural product mixture analysis by matrix-assisted DOSY using Brij surfactants in mixed solvents, M.G.S. Vieira, N.V. Gramosa, N.M.P.S. Ricardo, G.A. Morris, R.W. Adams, and M. Nilsson, RSC Adv. In Press (available at RSC)

20. Ultrahigh-resolution Total Correlation NMR Spectroscopy, M. Foroozandeh, R.W. Adams, M. Nilsson, and G.A. Morris, J. Am. Chem. Soc. In Press (available at ACS)

19. Photochemical pump and NMR probe: chemically created NMR coherence on a microsecond timescale, O. Torres, B. Procacci, M.E. Halse, R.W. Adams, D. Blazina, S.B. Duckett, B. Eguillor, R.A. Green, R.N. Perutz, and D.C. Williamson, J. Am. Chem. Soc. In Press (available at ACS)

18. Ultrahigh-Resolution NMR Spectroscopy, M. Foroozandeh, R.W. Adams, N.J. Meharry, D. Jeannerat, M. Nilsson, and G.A. Morris, Angew. Chem., Int. Ed. In Press (available at Wiley)

17. Accurate determination of one-bond heteronuclear coupling constants with “pure shift” broadband proton-decoupled CLIP/CLAP-HSQC experiments, I. Timári, L. Kaltschnee, A. Kolmer, R.W. Adams, M. Nilsson, C.M. Thiele, G.A. Morris, and K.E. Kövér, J. Magn. Reson. 239 (2014), 130 (available at ScienceDirect)

16. Diastereomeric Ratio Determination by High Sensitivity Band-Selective Pure Shift NMR Spectroscopy, R.W. Adams, L. Byrne, P. Király, M. Foroozandeh, L. Paudel, M. Nilsson, J. Clayden, and G.A. Morris Chem. Commun. 50 (2014), 2512 (available at RSC)

15. Towards biocompatible nuclear hyperpolarization using signal amplification by reversible exchange: quantitative in-situ spectroscopy and high-field imaging, J. Hövener, N. Schwaderlapp, R. Borowiak, T. Lickert, S.B. Duckett, R.E. Mewis, R.W. Adams, M.J. Burns, L.A.R. Highton, G.G.R. Green, A. Olaru, J. Hennig, and D. von Elverfeldt Anal. Chem. 86 (2014), 1767 (available at ACS)

14. Foldamer-Mediated Remote Stereocontrol: >1,60 Asymmetric Induction, L. Byrne, J. Solà, T. Boddaert, T. Marcelli, R.W. Adams, G.A. Morris, and J. Clayden, Angew. Chem., Int. Ed. 126 (2014), 155 (available at Wiley)

13. Suppressing Exchange Effects in Diffusion-Ordered NMR Spectroscopy (Cover Article), J.A. Aguilar, R.W. Adams, M. Nilsson, and G.A. Morris, J. Magn. Reson. 238 (2014), 16 (available at ScienceDirect)

12. Simultaneously Enhancing Spectral Resolution and Sensitivity in Heteronuclear Correlation NMR Spectroscopy, L. Paudel, R.W. Adams, P. Király, J.A. Aguilar, M. Foroozandeh, M.J. Cliff, M. Nilsson, P. Sándor, J.P. Waltho, and G.M. Morris, Angew. Chem., Int. Ed. 52 (2013), 11616 (available at Wiley)

11. “Perfecting” WATERGATE: clean proton NMR spectra from aqueous solution, R.W. Adams, C.M. Holroyd, J.A. Aguilar, M. Nilsson, and G.A. Morris, Chem. Commun. 49 (2013), 358 (available at RSC)

10. Tailoring kappa/iota-hybrid carrageenan from Mastocarpus stellatus with desired gel quality through pre-extraction alkali treatment, G. Azevedo, L. Hilliou, G. Bernardo, I. Sousa-Pinto, R.W. Adams, M. Nilsson and R.D. Villanueva, Food Hydrocolloids 31 (2013), 94 (available at ScienceDirect)

9. Utilization of SABRE-Derived Hyperpolarization To Detect Low-Concentration Analytes via 1D and 2D NMR Methods, L.S. Lloyd, R.W. Adams, M. Bernstein, S. Coombes, S.B. Duckett, G.G.R. Green, R.J. Lewis, R.E. Mewis, and C.J. Sleigh, J. Am. Chem. Soc., 134 (2012), 12904 (available at ACS)

8. The theory and practice of hyperpolarization in magnetic resonance using parahydrogen, R.A. Green, R.W. Adams, S.B. Duckett, R.E. Mewis, D.C. Williamson, and G.G.R. Green, Prog. Nucl. Magn. Reson. Spectr. 67 (2012), 1 (available at ScienceDirect)

7. Resolving natural product epimer spectra by matrix-assisted DOSY, R.W. Adams, J.A. Aguilar, J. Cassani, G.A. Morris, and M. Nilsson, Org. Biomol. Chem. 9 (2011), 7062 (available at RSC)

6. Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from parahydrogen: A route to substrate sensitization in NMR and MRI, M.J. Cowley, R.W. Adams, M.C.R. Cockett, S.B. Duckett, G.G.R. Green, J.A.B. Lohman, R. Kerssebaum, D. Kilgour, and R.E. Mewis, J. Am. Chem. Soc., 133 (2011), 6134 (available at ACS)

5. Selective detection of hyperpolarized NMR signals derived from para-hydrogen using the Only Para-hydrogen SpectroscopY (OPSY) approach, J.A. Aguilar, R.W. Adams, S.B. Duckett, G.G.R. Green, and R. Kandiah, J. Magn. Reson., 208 (2011), 49 (available at ScienceDirect)

4. Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating, M.F. Warsi, R.W. Adams, S.B. Duckett, and V. Chechik, Chem. Commun., 46 (2010), 451 (available at RSC)

3. A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization, R.W. Adams, S.B. Duckett, R.A. Green, D.C. Williamson, and G.G.R. Green, J. Chem. Phys., 131 (2009), 194505-1 (available at AIP)

2. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer, R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.Green, I.G. Khazal, J. López-Serrano, and D.C. Williamson, Science, 323 (2009), 1708 (available at AAAS)

1. Only para-hydrogen spectroscopy (OPSY), a technique for the selective observation of para-hydrogen enhanced NMR signals, J.A. Aguilar, P.I.P. Elliott, J. López-Serrano, R.W. Adams, and S.B. Duckett, Chem. Commun., 2007, 1183 (available at RSC)