Other pure shift and related methods

Ralph Adams

A Pure Shift NMR Workshop The University of Manchester, 12th September 2017

Other pure shift and related methods

A whistle-stop tour of things that haven't been covered yet, including ...

- BIRD, and its use in pure shift NMR
- 2D J spectra, absorption-mode signals in 2D J spectra, and pattern recognition
- Constant-time evolution
- Diagonal-suppressed 2D experiments
- J-scaling
- Measuring couplings to selected signals

1982 : **BIRD**

BILINEAR ROTATION DECOUPLING OF HOMONUCLEAR SCALAR INTERACTIONS

J.R. GARBOW, D.P. WEITEKAMP and A. PINES

Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA

Received 1 September 1982; in final form 5 October 1982

Chem. Phys. Lett. 93, 504 (1982)

1D pure shift NMR using BIRD - interferogram

- The BIRD_d active spin refocusing element inverts only protons directly coupled to ${}^{13}C$ (or ${}^{15}N$)
- Isotopic dilution ensures that their coupled partners are not inverted
- Protons are active if attached to ${}^{13}C$ (or ${}^{15}N$), passive if not
- A $^{1}\text{H}^{-13}\text{C}$ filter is required to suppress contributions from the 98.9 % protons attached to ^{12}C

Angew. Chem. Int. Ed. 50, 9716 (2011)

1D pure shift NMR using BIRD – real-time

- BIRD is compatible with both real time and interferogram based acquisition
- In molecules with natural-abundance sensitivity is limited by $1.1 \% {}^{13}C$, 0.37 % in ${}^{15}N$
- For ¹⁵N in enriched proteins and peptides there is no sensitivity penalty

J. Magn. Reson. 218, 141 (2012)

2D pure shift NMR using BIRD – real-time HSQC

- For experiments such as HSQC which include a ¹H-X filter the sensitivity penalty does not have to be paid again when using BIRD-based pure shift
- Real-time pure shift HSQC spectra can have both increased sensitivity and increased resolution when compared to the parent experiment

- For a different but related approach that uses BIRD, CT and linear prediction see: *J. Magn. Reson.* **199**, 192 (2009)
- There are several Bruker library pulse sequences named using 'RESET'

Angew. Chem. Int. Ed. 52, 11616 (2013)

2D pure shift NMR using BIRD – real-time HSQC

2D pure shift NMR using BIRD – Perfect Echo HSQC

• Protons attached to the same ¹³C are not decoupled from one another – geminal protons appear as doublets when using a standard BIRD pure shift HSQC

- By inserting a quadrature 90° pulse at the midpoint of a double spin echo to form a 'perfect echo', J modulation for an AX system is completely refocused
- The combination of perfect echo and BIRD HSQC can be used to refocus all $J_{\rm HH}$ including those between geminal protons
- Only interferogram acquisition can be used with the perfect echo version of HSQC

2D pure shift NMR using BIRD – Perfect Echo HSQC

Chem. Commun. **50**, 15702 (2014)

1976 : 45° Projection of a 2D J Spectrum

Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy*

W. P. Aue, J. Karhan, and R. R. Ernst

Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule, 8006 Zürich, Switzerland (Received 2 March 1976)

FIG. 1. Two basic schemes for 2D J-resolved spectroscopy. (a) Single echo experiment. (b) Spin echo sequence. Except for the effects of diffusion, both experiments produce the same results.

J. Chem. Phys. 64, 4229 (1976)

- An active spin refocusing (ASR) element (here ZS) placed at the start of the spin echo in a 2D J experiment yields an edited but conventional J-spectrum
- Placing the ASR element at the end of the echo yields a J spectrum with multiplet tilts in the opposite direction
- Reflecting the second spectrum about $\omega_1 = 0$ then adding the two results produces an absorption mode spectrum
- Sensitivity is limited by the ASR element BIRD and PSYCHE can also be used

J. Magn. Reson. 189, 293 (2007)

Conventional 2D J Spectrum

Reflected 2D J Spectrum

Conventional +

- Pattern recognition can be used to search through a 'reflected' J spectrum to give an integral map which resembles a pure shift ¹H NMR spectrum
- Processing in this way will not yield true integrals and can lead to overconfident interpretation of data
- Woodley and Freeman's method is related to iterative soft thresholding, used in reconstruction of non-uniformly sampled multidimensional spectra.

J. Magn. Reson. **124**, 104 (1997) *J. Magn. Reson. A* **109**, 103 (1994)

Signal extraction algorithms are designed to give perfect results but can lead to overconfident interpretation of data

- A z-filter at the end of a 2D J sequence can be used to suppress the dispersive component of signals in a J-spectrum at the cost of frequency discrimination in F₁.
- Application of an appropriate pattern recognition algorithm to the resulting Jspectrum simplifies the 2D multiplets to yield an absorptive J spectrum

J. Magn. Reson. 201, 18 (2009)

- A z-filter at the end of a 2D J sequence can be used to suppress the dispersive component of signals in a J-spectrum at the cost of frequency discrimination in F₁.
- Application of an appropriate pattern recognition algorithm to the resulting Jspectrum simplifies the 2D multiplets to yield an absorptive J spectrum

Z-filtered 2D J Spectrum

J. Magn. Reson. 201, 18 (2009)

- A z-filter at the end of a 2D J sequence can be used to suppress the dispersive component of signals in a J-spectrum at the cost of frequency discrimination in F₁.
- Application of an appropriate pattern recognition algorithm to the resulting Jspectrum simplifies the 2D multiplets to yield an absorptive J spectrum

'Recognition' processed 2D J Spectrum

J. Magn. Reson. 201, 18 (2009)

2D Fourier transform of pure shift NMR data

- The standard way to process F_2 interferogram pure shift data is to use data reconstruction to form a pure shift FID
- Alternatively, each collected FID can be extended beyond the duration of a chunk, and a 2D FT applied
- The result is a multiplet map
- Signals are homodecoupled in F_1 , but also aliased
- Multiplicity and *J* can be established from the 2D spectrum

Chem. – Eur. J. **19**, 4586 (2013)

2D Fourier transform of phase-sensitive pure shift NMR data - DIAG

- 2D FT of a standard interferogram pure shift experiments does not yield signals that are distorted in F_1 .
- F_1 absorption mode signals can be achieved by collecting the diagonal of a NOESY $(t_{mix} = 0 \text{ s})$ with a J-refocusing element at the midpoint of t_1
- To maximise resolution in F_1 , the spectrum can be aliased and then the diagonal reconstructed

Aliased F_1 pure shift NOESY

1.80 1.75 1.70 δ/ppm

Sequences on http://nmr.chemistry.manchester.ac.uk c/o Brucka/Jeannerat Angew. Chem. Int. Ed. 54, 6016 (2015)

4.95

1979 : Constant-Time Evolution

Homonuclear Broadband-Decoupled Absorption Spectra, with Linewidths Which Are Independent of the Transverse Relaxation Rate

J. Magn. Reson. 35, 167 (1979)

Constant-Time Evolution

- In a 2D series of experiments the spin system is allowed to evolve under J for a constant time, *t_c*, during which the chemical shift acts only for a variable portion *t₁*, before an FID is measured
- Evolution time for the chemical shift is t_1 , which varies
- Evolution time for couplings is fixed at t_c
- Double FT yields a spectrum which is 'pure shift' in F_1
- Constant-time methods are intrinsically two-dimensional so can be performed instead of standard 2D experiments at no extra time cost
- The amount of J-evolution that occurs is fixed rather than reduced to zero

Constant-Time Evolution + Covariance Processing

Angew. Chem. Int. Ed. 51, 6460 (2012)

Constant-Time Evolution + Covariance Processing

Angew. Chem. Int. Ed. 51, 6460 (2012)

Other pure shift and related methods

Ralph Adams

A Pure Shift NMR Workshop The University of Manchester, 12th September 2017

ZS diagonal-suppressed homonuclear 2D

- Diagonal signals in a homonuclear 2D NMR experiment can be suppressed by replacing the initial excitation pulse with a ZS spatial and frequency selective excitation and adding a J-refocusing element to the end of the sequence.
- Signals on the diagonal, experience both the selective and hard 180° pulses at the end of the sequence and are suppressed
- Crosspeaks, which arise from evolution at different frequencies during in t_1 and t_2 , experience only the hard 180° pulse, and survive

J. Magn. Reson. **232**, 1 (2013) *J. Magn. Reson.* **256**, 52 (2015)

ZS diagonal-suppressed homonuclear 2D

3 mM solution of lysozyme in D_2O

J. Magn. Reson. **232**, 1 (2013) *J. Magn. Reson.* **256**, 52 (2015)

Mixture of alcohols (n-propanol, isopropanol, ethanol, n-methylaminoethanol and allyl alcohol) in $CDCl_3$ with J-scaled spectra

Selective reintroduction of J into pure shift spectra

- Adding additional frequencyselective refocusing to the Jrefocusing element in a pure shift experiment reintroduces coupling to the selected resonances
- Coupling between other spins remains suppressed
- This method is the opposite of conventional homodecoupling

spectrum with coupling to H-3 reintroduced

Chem. Commun. **50**, 12254 (2014) *Chem. Commun.* **50**, 15597 (2014)

n-propanol

Selective introduction of J into 2D J spectra

- The G-SERF experiment also provides details about coupled spins but is based on a 2D J experiment
- Unlike a 2D J experiment, only J couplings to a selected resonance are seen
- Signals from selected resonances are suppressed

Selective introduction of J into 2D J spectra

Angew. Chem. Int. Ed. 55, 1090 (2016)

Selective introduction of J into 2D J spectra

- PSYCHEDELIC produces a 2D J spectrum containing the same coupling information in *F*₁ as G-SERF
- Additionally, multiplet structure is suppressed in F_2 so PSYCHEDELIC generally has higher resolution than its G-SERF equivalent

Similar spectra can be collected using pure shift variants of G-SERF, see *Chem. Commun.* **51**, 7939 (2015) and *Magn. Reson. Chem.* **44**, 1096 (2006)

Angew. Chem. Int. Ed. 55, 1090 (2016)

Other pure shift and related methods

A whistle-stop tour of things that haven't been covered yet, including ...

- BIRD, and its use in pure shift NMR
- 2D J spectra, absorption-mode signals in 2D J spectra, and pattern recognition
- Constant-time evolution
- Diagonal-suppressed 2D experiments
- J-scaling
- Measuring couplings to selected signals

A Pure Shift NMR Workshop

11.00	Gareth Morris	Welcome, introduction and history
11.30	Peter Kiraly	Interferogram and real-time acquisition methods
12.00	Laura Castañar	Zangger-Sterk and band-selective methods
12.30	Mohammadali Foroozandeh	PSYCHE
13.00		Lunch and poster session
14.00	Ralph Adams	Other pure shift and related methods
14.30	Mathias Nilsson	Practical implementations
15.00	Adolfo Botana	JEOL pure shift implementation
15.10	Vadim Zorin	MestreNova pure shift implementation
15.20	Ēriks Kupče	Bruker shaped pulse implementation
15.30		Question and answer session

The University of Manchester, 12th September 2017