Interferogram and real-time acquisition methods

Peter Kiraly

NMR Methodology Group, School of Chemistry, University of Manchester

Workshop on Pure Shift NMR

12th Sep 2017

- Why are we interested in decoupling?
- Basic concepts in pure shift NMR
 - Active and passive spins
 - Active spin refocusing elements: BS / Zangger-Sterk / PSYCHE / BIRD
- The interferogram acquisition method
 - Theory and pulse sequences
 - Illustrative examples
- The real-time acquisition method
 - Theory and pulse sequences
 - Illustrative examples
- Summary

Suppressing multiplet structure – heteronuclear decoupling

Partial ¹³C NMR spectrum of estradiol in DMSO-d₆ with (bottom) and without (top) proton decoupling

The concepts of spin decoupling

Active and passive spins in pure shift NMR

all work by differentially manipulating active and passive subpopulations of protons

Magn. Reson. Chem. 35 , 9 (1997)	<i>J. Magn. Reson.</i> 124 , 486 (1997)	Angew. Chem. Int. Ed. 53, 6990 (2014)	Chem. Phys. Lett. 93 , 504 (1982)
BS	Zangger-Sterk	PSYCHE	BIRD
multiple frequency RSNOB pulse 180° ¹ H	multiple frequency RSNOB pulse 180° ¹ H	Small flip angle CHIRP pulses	90° 180° 90° 1 _Н 1 _Н 180° 180°
	G _z	G _z	¹³ C/ ¹⁵ N

all work by differentially manipulating **active** and **passive** subpopulations of protons

J-evolution is negligible during the first few data points (period $4\tau_1$) delivering a small chunk of the desired pure shift FID

... homonuclear coupling (*J*) is refocused 2τ₁ later

Interferogram pure shift experiment – 2D acquisition

- Chemical shift is refocused $\Delta = [integer] / sw later than the beginning of acquisition$
- *J* is refocused at the midpoint of each chunk $(4\tau_1)$
- Incremented delay allows recording all chunks of pure shift FID (during $t_1 \delta$ evolves, but J is refocused)
- Phase cycle and/or PFG pairs can enforce CTP selection

The triple spin echo analogue with an ASR element

- Frequency-swept broadband pulses can be implemented
- Useful to deal with strong coupling artefacts e.g. in TSE-PSYCHE
- Duration of the chunk is not limited by duration of gradient pulses, but more relaxation loss

(20 ms chunk duration; $J_{AX} = 10$ Hz)

Effect of duration of chunk (SW₁)

Interferogram band-selective pure shift spectra of an AX spin system calculated in Matlab/Spinach. $(AQ = 1.3 \text{ s}; J_{AX} = 10 \text{ Hz})$

analogous to t_1 -noise in 2D NMR

interleaved 2D data acquisition is advisable for long experiments

Interferogram band-selective pure shift spectra of an AX spin system calculated in Matlab/Spinach. (AQ = 1.3 s; J_{AX} = 10 Hz; SW₁ = 50 Hz)

- Chunks are collected from a single scan
- Resolution is worse compared to interferogram experiment, because of

relaxation, diffusion/convection, and cumulative errors of pulse imperfection

If $\tau = 1 / (2 * {}^{1}J_{CH})$, then BIRD element refocuses the ${}^{13}C$ -attached protons.

Selected traces of real-time pure shift HSQC BIRD (${}^{1}CH = 190 \text{ Hz}$). The echo time (τ) of the BIRD element was varied (HSQC sequence element was kept constant).

Broadening here is due to BIRD timing error.

7.88 7.76	7.64	ppm
130 Hz	<u> </u>	10.7 Hz
150 Hz	<u> </u>	5.4 Hz
170 Hz	.∧	3.8 Hz
190 Hz	\wedge	3.5 Hz
210 Hz	\wedge	3.9 Hz

Effect of pulse imperfection in real-time pure shift HSQC using BIRD

¹⁵N HSQC of L80C mutant N-PGK protein in water (90%H₂O / 10%D₂O)

21

10 mg amikacin in D_2O

Interferogram vs real-time pure shift NMR

Interferogram experiments

- Resolution enhancement requires extended experiment time
- There is a trade-off between experiment time and quality of spectrum
- Many kinds of active spin refocusing element are available
- System instability may affect very high resolution experiments

Real-time acquisition

- Experiment times of parent and pure shift methods are practically identical
- Simultaneous sensitivity and resolution enhancement in real-time HSQC using BIRD
- Resolution enhancement is limited by relaxation, diffusion/convection, and pulse imperfection
- Lock disturbance can be a problem in high resolution experiments

Acknowledgements

Gareth Morris, Mathias Nilsson

and the NMR Methodology Group

Nº/ 9

http://nmr.chemistry.manchester.ac.uk/

Funding

EPSRC Engineering and Physical Sciences Research Council

Marie Curie Fellowships

A Pure Shift NMR Workshop

11.00	Gareth Morris	Welcome, introduction and history
11.30	Peter Kiraly	Interferogram and real-time acquisition methods
12.00	Laura Castañar	Zangger-Sterk and band-selective methods
12.30	Mohammadali Foroozandeh	PSYCHE
13.00		Lunch and poster session
14.00	Ralph Adams	Other pure shift and related methods
14.30	Mathias Nilsson	Practical implementations
15.00	Adolfo Botana	JEOL pure shift implementation
15.10	Vadim Zorin	MestreNova pure shift implementation
15.20	Ēriks Kupče	Bruker shaped pulse implementation
15.30		Question and answer session

University of Manchester, 12th September 2017