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Obtaining diffusion coefficients from PFG NMR diffusion (a.k.a DOSY) data is, in the general case,
an ill-posed problem. Numerous methods for processing such data have therefore been developed,
each with different constraints and assumptions. The Regularized Resolvent Transform (RRT) is
a proven and robust method for spectral inversion. In earlier papers RRT, albeit very slow, was
argued to be superior for DOSY processing to a related algorithm, the Filter Diagonalization Method
(FDM). Here FDM is revisited and a new regularization model is implemented, which drastically
improves the performance and provides spectra of comparable or better quality to those provided
by RRT. Both the RRT and the FDM for DOSY processing have been implemented as options in
the free and open source DOSY Toolbox.

I. INTRODUCTION

Arguably the most successful NMR method for mix-
ture analysis is diffusion-ordered spectroscopy (DOSY).
In DOSY, the different diffusion behavior of individual
species is exploited to separate the NMR signals con-
tributed by individual compounds [? ? ].

A DOSY data set is typically acquired using a pulsed
field gradient spin or stimulated echo (PFGSE or PFG-
STE) pulse sequence[? ? ] in which information on
diffusion is obtained by recording spectra with different
field gradient pulse amplitudes [? ? ? ? ? ]. A diffusion
coefficient for each signal can normally be obtained by fit-
ting the signal attenuation to some form of the Stejskal-
Tanner equation for unrestricted diffusion [? ? ]:

S(g) = S0e
−Dγ2δ2g2∆′

(1)

where S is the amplitude of a resonance, S0 is the am-
plitude in the absence of diffusion, D is the diffusion co-
efficient, γ is the magnetogyric ratio, g is the gradient
strength, ∆′ is the corrected diffusion time and δ is the
gradient pulse width.

The use of varying PFG amplitudes introduces a sec-
ond dimension (“the diffusion dimension”) to the NMR
experiment. For a multicomponent solution in which
signals from different components overlap in the NMR
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spectrum, the signals will in general undergo multiexpo-
nential decay along the diffusion dimension. This leads
us to the inverse problem, which requires the evaluation
of a Fourier transform (FT) along the acquisition dimen-
sion, followed by an inverse Laplace transform (LT) along
the diffusion dimension. The 2D inverse problem can be
simplified when factored into two 1D problems. One can
first apply the FT to the free induction decay (FID) for
each value of PFG amplitude. The resulting 2D data set
can then in principle be analyzed by applying an inverse
LT (or often, in practice, performing a multiexponential
fit) along the diffusion dimension at each value of the
chemical shift. In the simplest case, each resonance is
generated by a single component of the mixture, hence
a monoexponential fit suffices. This is the assumption
used in HR-DOSY [? ]).

Where there is no overlap between multiple peaks at
a given chemical shift, a monoexponential fit can resolve
compounds whose diffusion coefficients differ by as little
as 1%. Where the assumption of non-overlapping peaks
is not satisfied, however, the result of a monoexponential
fit is predictable but incorrect, producing a diffusion co-
efficient that is typically a compromise between the true
values for the overlapping peaks. While a skilled spectro-
scopist can often interpret such a sub-optimal HR-DOSY
plot if overlap is not too extensive, there is a pressing
need for alternative analysis methods appropriate to the
problem studied. In contrast to the case of exponential
fitting, the solution to a multiexponential fit, while of-
ten useful [? ] with high-quality experimental data, is
in general highly unstable. In particular, the results are
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method-dependent even in the case of a biexponential
fit of noisy data, while higher exponential fits quickly be-
come impossible. This is a notoriously difficult numerical
problem that generally has no satisfactory solution (see
e.g. ref. [? ]).

Because all resonances from a single compound are
(with the notable exception of exchanging systems) ex-
pected to show a decay governed by a single diffusion
coefficient, it can be advantageous to exploit this covari-
ance and fit the entire spectrum instead of the individ-
ual peaks[? ? ? ? ? ]. Such multivariate methods
are particularly useful for spectra, or sections of spec-
trum, containing signals of relatively few (2-3) species,
but require at least 30% difference in diffusion coefficient
between components and are more sensitive to system-
atic errors in experimental data than univariate meth-
ods such as HR-DOSY. The strengths of HR-DOSY and
multivariate methods can be combined in hybrid analysis
methods such as RECORD and LOCODOSY, in which
smaller windows containing a limited number of compo-
nents are subjected to separate multivariate processing
and then combined [? ? ]. A number of the algorithms
discussed above [? ? ? ? ? ? ? ? ? ? ? ] are currently
implemented in the freely available DOSY Toolbox [? ].

The Filter Diagonalization Method (FDM) (see e.g.
refs. [? ? ] and the review [? ] with references
therein) avoids factorization, and instead attacks the 2D
inverse problem directly. It essentially assumes, in line
with other so-called “autoregression” methods, that the
experimental data can be decomposed into a finite sum
of stationary complex oscillations. The task of identify-
ing the frequencies and amplitudes of these oscillations
can be reduced to generalized eigenvalue problems. More
precisely, in FDM the spectral analysis is performed lo-
cally by splitting the whole spectral range into small win-
dows, and thus considering a series of small generalized
eigenvalue problems. This treatment, using linear alge-
bra, carries the benefit of improved computational ef-
ficiency as compared to nonlinear global optimization.
While FDM has been previously used to analyze oscilla-
tory NMR signals, its application to PFG NMR data
is novel. A closely related approach, the Regularized
Resolvent Transform (RRT), or more precisely a variant
thereof (iRRT) that is adapted to the problem involving
the inverse LT, has previously been applied to PFG NMR
data [? ? ] with promising results. However, rather
than solving generalized eigenvalue problems, RRT re-
casts the task of spectral estimation as a large number
of linear least squares problems, making its computation
many times more expensive than that of FDM.

The original argument of ref. [? ] in favor of iRRT was
that the ill-posed nature of the inverse LT problem calls
for a robust and reliable regularization method. While
this is straightforward to implement for the linear least
squares problem that appears in iRRT, no general robust
and reliable algorithm seemed to be available for an ill-
conditioned generalized eigenvalue problem. In fact the
2D FDM using the regularization scheme of ref. [? ]

gave results inferior to those obtained by iRRT. Here we
revisit this problem, and demonstrate that a different reg-
ularization technique works, and produces spectra that
are at least as good as iRRT DOSY spectra. Moreover,
the fact that FDM estimates the spectra parametrically
allows us to consider a wider variety of spectral represen-
tations than are available with iRRT spectra. In what
follows, we describe an adaptation of 2D FDM for the
DOSY analysis of 2D PFG NMR data. Both FDM and
iRRT analysis have been incorporated into the DOSY
toolbox [? ].

II. THEORY

The problems of harmonic inversion and spectral
estimation

We assume that in a DOSY experiment, PFG spec-
tra are recorded for PFG amplitudes (gm)2 ∝ m (m =
0, 1, 2, ...) such that the signal decays in the diffusion di-
mension exponentially as a function of m. A FID is
then acquired for each value of gm, resulting in a 2D
data set cnm := c(nτ ; gm) with n = 0, .., N − 1 and
m = 0, ...,M−1, where index n runs along the acquisition
dimension sampled evenly with time increment τ . (For
simplicity such a dataset is referred to in what follows as
a “2D time signal”, although the actual dimensions are
time and gradient amplitude). The DOSY signal can be
parametrized as

cnm =

K∑
k=1

dku
n
kλ

m
k (2)

where

uk := e−iτωk ; λk := e−ηαk (3)

in which the ωk are the usual “complex frequencies” as-
sociated with the proton chemical shifts, and the αk are
proportional to the diffusion coefficients of the molecules
associated with the peaks. The constant η depends on
the increment in field gradient amplitude and the exper-
iment timing, as described by Eq. (??).

Physically one expects that λk in the 2D harmonic in-
version problem (??) are purely real (i.e., the time signal
cnm does not oscillate in m) and both sets of poles sat-
isfy |uk| < 1 and |λk| < 1 (i.e., cnm decays in both n and
m). However, neither of these constraints are explicitly
imposed in FDM as they would prevent the harmonic in-
version problem from having a linear algebraic solution.
Thus, numerically both sets of poles are allowed to be
any complex numbers with uk being spread preferably
over the interior region of the unit disk close to the unit
circle, and λk concentrated around the real number line
between 0 and 1.

Define a 2D DOSY spectrum of cnm parametrized ac-
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cording to Eq. (??):

I(ω, α) =

K∑
k=1

dk

(
τ

1− uk/u

)(
η

1− λk/λ

)
(4)

with u := e−iτω and λ := e−ηα. This spectral represen-
tation corresponds to a FT of cnm in the direct dimen-
sion followed by an inverse LT in the diffusion dimension.
While I(ω, α) should capture the relevant spectral fea-
tures, the presence of imaginary components of αk causes
it to suffer from undesirable “tails”, which are especially
pronounced in the diffusion dimension, and which can
make a plot of I(ω, α) difficult to interpret, particularly
when displayed using low contours. As suggested earlier
[? ], such tails could be reduced by switching to pseudo-
absorption lineshapes:

I(2)(ω, α) =

K∑
k=1

dk

(
τ

1− uk/u

)2(
η

1− λk/λ

)2

(5)

Unfortunately, compared to a true double-absorption
spectral representation, this representation distorts the
relative peak amplitudes: each peak is scaled by a factor,
(Imαk Imωk)−1, inversely proportional to the product of
its widths in both dimensions, so that narrow peaks are
overemphasized relative to broad ones.

At first glance, there would seem to be complete free-
dom to choose a desirable lineshape by manipulating the
spectral parameters that appear in Eq. (??), for example
replacing Lorentzian lineshapes with Gaussian. However,
this can be done only using a stable, well-defined line list
{dk, uk, λk, k = 1, ...,K}, where each entry corresponds
to an isolated peak. For realistic DOSY data such a
line list is hardly feasible to obtain, thus limiting op-
tions severely. We therefore consider a “non-aggressive”
modification of Eq. (??), in which Gaussian weighting
functions

ζσ(α− αk) = exp

[
− (α− Reαk)2

2σ2

]
, (6)

are applied to eliminate the slowly-decaying tails in the
diffusion dimension:

Iσ(ω, α) =

K∑
k=1

dk

(
τ

1− uk/u

)(
ηζσ(α− αk)

1− λk/λ

)
(7)

It is also useful to specify minimum widths for peaks
in the chemical shift dimension (Γω) and in the diffusion
dimension (Γα). This effectively sets an upper bound
on the resolving power of the method, preventing small
numerical errors in the estimation of the imaginary parts
of ωk or αk from giving physically unrealistic linewidths.
Applying the transformations

ωk → Re[ωk] + sign(Im[ωk])iΓω, if |Im[ωk]| < Γω (8)

αk → Re[αk] + sign(Im[αk])iΓα, if |Im[αk]| < Γα

smooths the spectrum slightly and prevents erroneous
peaks with low amplitudes but very low linewidths ob-
truding. By broadening narrow features, the spectrum
is smoothed so as not to overemphasize spurious detail.
Peak broadening also reduces the impact of digitization
on the appearance of contour plots.

The Filter Diagonalization Method

Although in the original formulation of 2D FDM [?
] the parametric fit (??) was stated as the main ob-
jective, it was realized later that for noisy data, the 2D
harmonic inversion problem, and especially the one as-
sociated with DOSY data, is extremely ill-posed. Here
we utilize the version of the 2D FDM that only uses the
parametrization (??) implicitly (i.e., a construction of a
full coupled line list {dk, uk, λk, k = 1, ...,K} is avoided),
but instead only solves a 2D spectral estimation problem
[? ], i.e., estimating I(ω, α) (or I(2)(ω, α) or Iσ(ω, α)
) from a finite data set {cnm}. The two problems are
certainly related but the spectral estimation problem is
much less demanding as it does not need to assume that
the individual entries (uk, λk, dk) are physically meaning-
ful (or even available). Consequently, in what follows we
will focus on the problem of spectral estimation. A brief
derivation of 2D FDM will be provided; for more details,
see the review [? ].

The 1D FDM ansatz of ref. [? ], which relates the
time signal to a quantum time autocorrelation function,
is extended to the 2D case. We assume that the 2D time
signal cnm can be written in the form [? ]

cnm = ΦTÛnΛ̂mΦ, (9)

where Φ is a state vector (“a wavepacket”) and Û and Λ̂
are commuting (“evolution”) operators, i.e.

Û Λ̂ = ΛÛ (10)

These operators are also assumed to be complex symmet-
ric (not to be confused with Hermitian); that is to say,
for any two state vectors Ψ and Φ the following identities
are satisfied:

(Ψ|Φ) = (Φ|Ψ); (Ψ|Û |Φ) = (Φ|Û |Ψ); (Ψ|Λ̂|Φ) = (Φ|Λ̂|Ψ),

where (Ψ|Φ), etc. define a complex symmetric (non-

Hermitian) inner product. Û , Λ̂ and Φ in Eq. (??) are
defined implicitly and are used to recast the harmonic
inversion (??) as a linear algebra problem. Consider the

eigenvalue problems for Û and Λ̂

ÛΥk = ukΥk; Λ̂Υk = λkΥk (11)

with the eigenvectors {Υk} forming an orthonormal set

(Υk|Υm) = δkm (12)
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(Since Û and Λ̂ commute they possess a simultaneous
eigenbasis.)

Substituting the spectral representations of Û and Λ̂

Û =
∑
k

uk|Υk)(Υk|; Λ̂ =
∑
k

λk|Υk)(Υk| (13)

into Eq. (??) we obtain Eq. (??) with

dk = (Υk|Φ)2 (14)

That is, the two assumptions (??) and (??) are equiv-
alent. The ansatz of Eq. (??) allows us to rewrite the
parametric spectral representations (??) and (??) using
an alternative form:

I(ω, α) = (Φ|

(
τ

1− Û/u

)(
η

1− Λ̂/λ

)
|Φ) (15)

I(2)(ω, α) = (Φ|

(
τ

1− Û/u

)2(
η

1− Λ̂/λ

)2

|Φ)(16)

Next, we wish to convert the operator eigenvalue prob-
lems (??) into matrix eigenvalue problems, so that they
can be solved numerically. This requires suitable matrix
representations of the operators Û and Λ̂, which so far
have been defined only implicitly. To this end, consider a
basis {Ψj}, which is a Fourier basis in the direct (chem-
ical shift) dimension:

Ψj =

M̃∑
m=0

Ñ∑
n=0

(
Û/zj

)n
Λ̂mΦ (17)

with zj := e−iτϕj

where Ñ = N/2 and M̃ = M/2, assuming for sim-
plicity that both N and M are even integers, and
{ϕj , j = 1, ...,Kwin} is an evenly spaced grid with spac-
ing ∆ϕ ≤ 2π/(Nτ) that spans a window in the frequency
domain, ϕj ∈ [ωmin;ωmax]. Just for now, we can assume
that this window coincides with the entire Nyquist range,
[−π/τ ;π/τ ]. It will be shown that a small window in the
frequency domain could suffice. In principle, an addi-
tional Fourier basis transformation could be performed
in the second dimension, but because of the lack of os-
cillations in the diffusion dimension, such a basis would
be highly ill-conditioned (linearly-dependent) and would
provide little benefit.

We assume that the eigenvectors Υk can be well rep-
resented using the Fourier basis:

Υk =
∑
j

BkjΨj (18)

where we have introduced a column vector Bk =
(Bk1, ...,BkKwin

)T containing the expansion coefficients.
Define the following Kwin ×Kwin matrices, which are

respectively the overlap matrix and the matrix represen-
tations of operators Û and Λ̂ in this basis:

[U0]jj′ = (Ψj |Ψj′) (19)

[U1]jj′ = (Ψj |Û |Ψj′)

[U2]jj′ = (Ψj |Λ̂|Ψj′)

These matrices can be evaluated explicitly in terms of
the available data {cnm} by substituting Eq. (??) into
Eq. (??) and than utilizing Eq. (??):

[U0]jj′ =

M̃∑
m=0

Ñ∑
n=0

M̃∑
m′=0

Ñ∑
n′=0

cn+n′,m+m′(zj)
−n(zj′)

−n′

[U1]jj′ =

M̃∑
m=0

Ñ∑
n=0

M̃∑
m′=0

Ñ∑
n′=0

cn+n′+1,m+m′(zj)
−n(zj′)

−n′

[U2]jj′ =

M̃∑
m=0

Ñ∑
n=0

M̃∑
m′=0

Ñ∑
n′=0

cn+n′,m+m′+1(zj)
−n(zj′)

−n′

(20)

Though correct, each of the above expressions includes
a summation over 4 indices, which is numerically very
expensive. Substantially more efficient expressions are
given in the next section.

Substituting Eq. (??) into Eq. (??) we obtain general-
ized eigenvalue problems

U1Bk = ukU0Bk; U2Bk = λkU0Bk (21)

Note that the eigenvectors are mutually orthogonal:

BT
k′U0Bk = 0 (k 6= k′) (22)

In addition, we normalize them according to

BT
kU0Bk = 1 (23)

Solving Eq. (??), in principle, provides the solution of
the harmonic inversion problem (??), but unless the data
{cnm} being processed fit exactly the form of Eq. (??),
there is a hidden problem that still remains: numeri-
cally, the two eigenvalue problems in Eq. (??) result in
two distinct sets of eigenvectors {Bk} and {Ak′} that
are generally impossible to couple in a meaningful way.
Therefore, we instead solve two independent generalized
eigenvalue problems:

U1Bk = ukU0Bk; U2Ak′ = λk′U0Ak′ (24)

with normalization conditions

BT
kU0Bk = 1; AT

k′U0Ak′ = 1 (25)

Although with two uncoupled sets of eigenvectors a
complete solution of the harmonic inversion problem is
impossible, ref. [? ] shows how, in spite of this difficulty,
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a meaningful 2D spectrum can still be constructed. First,
define the cross correlation matrix

Dkk′ = BT
kU0Ak′ (26)

Ideally, one wants the two sets of eigenvectors, {Bk} and
{Ak′}, to be identical, generating a matrix D whose rows
could be reordered to form a unit matrix. Generally,
the two sets of eigenvectors are distinct, leading to a full
D matrix with some elements Dkk′ ∼ 1 (corresponding
to nearly simultaneous eigenvectors) and most other ele-
ments, very small.

Define the column vectors b(ω), b(2)(ω), a(α), a(2)(α)
and aσ(α), with components

bk(ω) =

(
τ

1− uk/u

)
BT
kC (27)

b
(2)
k (ω) =

(
τ

1− uk/u

)2

BT
kC

ak(α) =

(
η

1− λk/λ

)
AT
kC

a
(2)
k (α) =

(
η

1− λk′/λ

)2

AT
kC

aσk(α) =

(
ηζσ(α− αk)

1− λk/λ

)
AT
kC

where the elements of the data array C =

(f
(0)
1 , ..., f

(0)
Kwin

)T are defined in the next section
(Eq. (??)).

The three spectral representations can now be written
as:

I(ω, α) = b(ω)
T
Da(α) (28)

I(2)(ω, α) = b(2)(ω)
T
Da(2)(α) (29)

Iσ(ω, α) = b(ω)
T
Daσ(α) (30)

Working expressions for evaluating the data
matrices

The expressions for the data matrices Up (p = 0, 1, 2)
introduced in Eq. (??) can be simplified, evaluating the
sums over m, m′ and n′. Define the arrays

f
(p)
j :=

Ñ−1∑
n=0

a(p)
n z−nj , (31)

g
(p)
j :=

Ñ−2∑
n=0

a
(p)

n+Ñ
z−nj

with

a(0)
n :=

M−2∑
m=0

cn,m(M̃ − |M̃ −m− 1|),

a(1)
n :=

M−2∑
m=0

cn+1,m(M̃ − |M̃ −m− 1|),

a(2)
n :=

M−2∑
m=0

cn,m+1(M̃ − |M̃ −m− 1|)

For the off-diagonal elements (j 6= j′), we have [? ]

[Up]jj′ =
zj

(
f

(p)
j′ − z

−M
j g

(p)
j′

)
− zj′

(
f

(p)
j − z−Mj′ g

(p)
j

)
zj − zj′

(32)
and for the diagonal elements,

[Up]jj =

N−2∑
n=0

(Ñ − |Ñ − 1− n|)a(p)
n z−nj (33)

Numerical evaluation of equations (??)-(??) is already
very inexpensive, but only the sums for p = 0 have to
be computed explicitly; for p > 0 one can use recursive
formulae. Moreover, with a suitable choice for the grid
{ϕj , j = 1, ...,Kwin} (note that zj = e−iτϕj ), the above
summations can be evaluated using a fast FT.

Numerical solution of the generalized eigenvalue
problems: windowing and regularization

The solution of the generalized eigenvalue problems
(??) involving Kwin × Kwin square matrices scales as
∼ K3

win, which for large data sets (large N) may become
unacceptably expensive if a large window with many ba-
sis functions is used. However, due to the use of the
Fourier basis (??), the structure of U is such that very
accurate eigenpairs (uk,Bk) and (λk′ ,Ak′) can be ob-
tained by solving these equations in block-diagonal fash-
ion, i.e., by splitting the Nyquist range into a number of
small windows [ωmin

l ;ωmax
l ] and considering only the cor-

responding small (Kwin ×Kwin) block for each window.
Another key issue in the 2D FDM is that the gener-

alized eigenvalue problems in Eq. (??) are typically very
ill-conditioned, so that their exact numerical solution,
when used in e.g. Eq. (??), yields spectra that are con-
taminated by artifacts. This, consequently, calls for reg-
ularization of the data matrices. Our numerical tests
indicate that the previously proposed [? ] regularization
scheme named “FDM2k” gives poor results. In FDM2k
the original generalized eigenvalue problems (??) are re-
placed by

U†0U1Bk = uk

(
U†0U0 + q2I

)
Bk; (34)

U†0U2Ak′ = λk′
(
U†0U0 + q2I

)
Ak′
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The degree of regularization, designated by the regular-
ization parameter q, is normalized by including the scal-

ing factor σ̄ =
〈∣∣∣[U0]jj

∣∣∣〉, which is set equal to the av-

erage value of the diagonal elements of U0. (A scaling
factor that depends on the properties of U0 in a more
sophisticated fashion could also be used, which would re-
duce the ambiguity in the choice of the regularization
parameter q.)

An alternative regularization can be implemented by
using the singular value decomposition (SVD) of U0:

U0 = VΣW† (35)

where VV† = I, WW† = I and Σ = diag{σk} with real
σk > 0. Now replacing

U0 → VΣqW
† with Σq = diag

{
σ2
k + (q σ̄)2

σk

}
(36)

and solving Eq. (??) one achieves the result similar to
that of Eq. (??), i.e. still poor.

However, in this work we discovered yet a new and
embarrassingly simple regularization procedure based on
replacing the diagonal matrix Σ with Σq, in which all
singular values σk < qσ̄ are replaced with qσ̄, where the
latter plays the same role of a regularization parameter
as before. This regularization turns out to be superior
to that in Eq. (??) and to all the other regularization
recipes that we have tested so far.

iRRT: Regularized Resolvent Transform for DOSY
processing

Here for completeness we also include working expres-
sions for the iRRT method, which is closely related to
FDM conceptually, but differs in the numerical evalua-
tion of the spectra (equations (??) and (??)) and, par-
ticularly, in how the regularization is implemented.

If the data cnm satisfy Eq. (??) (and, consequently,
Eq. (??)) exactly, it can be shown that the FDM expres-
sions for the spectra (??) and (??) can be rewritten in
an equivalent form

I(ω, α) = τηCTR−1
1 U0R

−1
2 C (37)

I(2)(ω, α) = τ2η2CTR−1
1 U0R

−1
1 U0R

−1
2 U0R

−1
2 C

where we defined the two matrix pencils

R1 = U0 −U1/u; R2 = U0 −U2/λ (38)

Generally, the matrices R1 and R2 are highly ill-
conditioned, so that the use of their exact inverses leads
to spectra with artifacts. In iRRT this problem is solved
by using pseudo-inverses [? ]. For example, a pseudo-
inverse of R1 can be obtained by replacing it with its
regularized matrix, as in the regularization of U0 in the

previous section. That is, at each frequency ω the SVD
of R1 is performed

R1 = WΣV†

Given a regularization parameter q > 0, a pseudo-inverse
of R1 can then be computed by first replacing

σk → qσ̄, if σk < qσ̄ (39)

and then using

R−1
1 → VΣ−1

q W† (40)

where for the scaling factor we use the same expression
as that defined for regularization of U0 in the previous

section, namely, σ̄ =
〈∣∣∣[U0]jj

∣∣∣〉. The pseudoinverse of

R2 is evaluated following the same procedure.
The implementation of iRRT for each frequency win-

dow requires a SVD of a Kwin ×Kwin matrix R1(ω) to
be performed for every value of ω used to represent the
spectra, and then SVD of R2(α) for every value of α.
This is to be compared in the FDM with a single SVD of
U0 followed by the solution of two generalized eigenvalue
problems (??).

III. EXPERIMENTAL

The DOSY data from sample 1 used in this investiga-
tion were acquired using a sample containing dextran,
tartrazine, ephedrine, TSP (sodium 3-(trimethylsilyl)-
propionate-2,2,3,3-d4), nicotinic acid and ethanol, in
D2O. For further details see the original paper on LOCO-
DOSY[? ]. Sample 2 was made up in 80 mM phosphate
buffer at 7.4 pD, and contained 10 mM TSP as a refer-
ence compound, with 3.75 mM of the tripeptide Val-Ty-
Val, 3.75 mM of phenol, and 5.0 mM of propan-1-ol.The
DOSY data for sample 2 were acquired on a 500 MHz
Bruker DRX spectrometer equipped with a 53 G cm-1 5
mm probe using the Oneshot45 ([? ]) pulse sequence.
256 transients of 16378 complex points were acquired for
each of 15 gradient increments ranging from 5.3 to 42.4
G cm-1 nominal amplitude. Equal increments in gradient
squared were used with half-sine shaped gradient pulses
of 2.5 ms duration and with a diffusion delay of 100 ms.

IV. RESULTS AND DISCUSSION

A DOSY plot always needs interpretation. This can be
straightforward (e.g. when spectra are well resolved), but
frequently a critical examination of the data is necessary.
In such cases it is important to compare the results of
applying different processing algorithms. Here we com-
pare the results obtained with the new method, FDM-
DOSY, to those obtained using the existing iRRT-DOSY
together with three methods already implemented in the
DOSYToolbox: the univariate methods, HRDOSY, and
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Figure 1: HR-DOSY plot of sample 1, containing seven molecular species (dextran, tartrazine, ephedrine, TSP, nicotinic acid
and ethanol, in D2O). Where signals overlap in the spectrum the apparent diffusion coefficients appear at compromise values.

Figure 2: LOCODOSY plot of sample 1, containing seven molecular species. All signals appear at their correct apparent
diffusion coefficient.

biexponential fitting, and the more advanced multivari-
ate algorithm, LOCODOSY, which is better adapted to
systems with overlapping peaks in the chemical shift di-
mension. HR-DOSY is quick and stable, and when the
underlying assumption that each resonance belongs to a

single species is violated it fails in a predictable way.

The HR-DOSY plot (Fig. ??) of a seven component
mixture (sample 1) illustrates the method’s strengths and
weaknesses.

Most of the signals are well-resolved, and the calcu-
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Figure 3: iRRT-DOSY pseudoabsorption mode plot of sample 1, using N = 4096, M = 30, Kwin = 200, q = 10. Signals appear
at their correct apparent diffusion coefficient, but the peaks have an undesirable shape and distorted amplitudes due to the
pseudoabsorption representation.

Figure 4: FDM-DOSY pseudoabsorption mode plot of sample 1. N = 4096, M = 30, Kwin = 200, q = 1, Γω = 0, Γα = 0.
Signals appear at their correct apparent diffusion coefficient. Just as in the RRT processing, the peaks have an undesirable
shape and distorted amplitudes due to the pseudoabsorption representation.

lated diffusion coefficients are reliable, accurate and un-
ambiguous. However, in a few places (e.g around 8 ppm,
5 ppm, and 3 ppm) resonances overlap and the diffusion
coefficient is not well defined. Factorization of the 2D
problem has led to each peak being assigned an apparent

diffusion coefficient without regard to the possibility of
overlap with nearby peaks. Where overlap does occur, in-
correct diffusion coefficients are obtained and, for exam-
ple, peaks within a given multiplet are no longer properly
aligned. It is in such cases as these that other processing
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Figure 5: FDM-DOSY absolute value mode spectra with Gaussian masking for sample 1. N = 4096, M = 30, Kwin = 200,
q = 1 and σ = 0.2 · 10−10m2s−1, Γω = 0, Γα = 0. Signals appear at their correct apparent diffusion coefficient, with more
faithful peak amplitudes due to the absolute value display; the peak appearance is greatly improved by Gaussian masking

methods can have advantage. One such method, LOCO-
DOSY has been shown to produce a DOSY spectrum
that corresponds very well to the known composition
where only a small number of species contribute to the
signal at any one chemical shift. LOCODOSY works by
processing the spectrum piecemeal, using windows which
span a small interval of chemical shift, each of which is
assumed to contain peaks from only a few species. It
can produce beautiful results (as in Fig. ??), but the big
drawback is that for the best results intelligent user input
is required when segmenting the spectrum, as there is no
general way to automatically decide the window bound-
aries and the number of components within each window
(the automatic determination of number of components
works well in most cases and fails in a predictable way).
In many cases, the spectrum can be auto-partitioned,
only requiring the user to visually inspect the spectrum
and assign a threshold value.

The closest relative of FDM-DOSY is iRRT-DOSY
[? ], which has previously been shown to give good
results. However, FDM possesses two advantages over
iRRT: while the spectral windows and the data matri-
ces involved in FDM are the same as those in iRRT,
the FDM algorithm is significantly faster. iRRT runtime
scales poorly with both the chosen matrix size, and with
the image resolution of the rasterized DOSY plot. Hence
iRRT may only be suitable for computing small regions
of the full spectrum. Perhaps more importantly, FDM
provides spectral parameters which allow a wider range
of spectral representations to be used than is the case for
the iRRT. For example, in iRRT one has essentially to

choose between two spectral representations. Absolute
value mode (??) has long tails in both dimensions which
form a cross-hair shape, which the typical spectroscopist
may find very unfamiliar. The double-absorption line-
shape provided by the pseudoabsorbtion mode (??), has
rapidly decaying tails so that when viewed with the cor-
rect contour levels, the peaks generated are more compa-
rable to those produced by other methods. Unfortunately
this means that the narrow peaks are overemphasized
relative to the broad peaks. Fig. ?? shows the double-
absorption iRRT spectrum of the same DOSY data as
used above. The following processing parameters were
used: N = 4096, Kwin = 200, σα = 0.2, and q = 10.
While all the spectral features are present, the spectral
appearance is certainly inferior, with distorted relative
intensities.
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Figure 6: Comparison of four different processing methods for the DOSY data of sample 2 (a 4 component mixture of Val-Tyr-
Val, phenol, propan-1-ol and TSP): a) HR-DOSY, b) biexponential fitting, c) LOCODOSY, and d) FDM-DOSY.
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FDM provides more flexibility for the spectral repre-
sentation. As an example, using FDM one can correct
the unwanted long tails of the peaks in the absolute value
mode by Gaussian masking (cf. Eq. (??)), and by setting
a lower limit on the peak width (cf. Eq. (??)) one can
reduce the effect of amplitude distortion in the pseudo-
absorption spectrum. This is demonstrated in Figures
?? and ??, in which we show the FDM absolute value
spectrum and pseudo-absorption spectrum, respectively.
(The FDM calculations used the same set of parameters
as those for the iRRT, with the exception of regulariza-
tion parameter q.)

While the peak list produced by FDM is independent
of the choice of display mode, the choice of graphical
representation is under user control. Depending on the
primary goal, the optimal settings for creating a DOSY
plot may differ depending on whether easy determination
of diffusion coefficients or a generally visually pleasing
spectrum is sought.

As a second example (Fig. ??), we demonstrate the
various discussed processing methods on a 4-component
mixture (the solvent, HOD, peak is excluded from anal-
ysis). There are overlapping signals at around 1, 3 and
4 ppm, which in the HR-DOSY spectrum causes peaks
at those frequencies to have diffusion coefficients at val-
ues intermediate between those of the species involved.
In the biexponential fitting, the overlap at 1 ppm is re-
solved but for the other overlaps, at 3 and 4 ppm, the
signal-to-noise ratio is insufficient for a biexpoential fit
to resolve the overlap at the given diffusion coefficients.
The FDM-DOSY approach is much more successful, with
most signals in their correct positions. For this particular
data set the best result is obtained with fully automated
LOCODOSY processing. In this example it is clear that
comparing different processing methods is a valuable aid
in assigning the component NMR spectra.

V. CONCLUSIONS

We have compared the DOSY plots produced by the
DOSY Toolbox [? ] using five different methods. Al-

though the appearance of the plots varies, the features
identified by each method are similar in each case.

HR-DOSY is quick (i.e. seconds) and stable, and the
only parameters to set are the spectral threshold deter-
mining minimum peak height to be processed and the
form of the decay (typically pure exponential, or com-
pensated for non-uniformity of the field gradients present
in some spectrometers [? ]).

The biexponential fit is dependent on starting values,
so a large number of these have to be compared, typically
making the process orders of magnitude slower.

FDM typically gives acceptable results with the de-
fault values, but can give small spurious peaks, so the
regularization is under user control to allow different reg-
ularizations to be compared. An empirical value q=0.7
provided the best suppression of artifacts in the examples
in this paper. In principle, one could further optimize the
appearance of the spectral peaks by specifying minimum
widths Γα and Γω in the chemical shift and diffusion
dimensions, while still resolving the components of the
mixture. However, this feature introduces additional ad-
justable parameters in the FDM processing, making it
less straightforward.

LOCODOSY can produce very good results but relies
on the segmentation of the mixture spectrum. In the data
for sample 2 this was fully automated, but for sample 1
manual intervention was necessary for best results.

It is clear that FDM DOSY can produce similar results
to established methods, but with different compromises,
and it is expected to be a valuable addition to the current
methods available for processing DOSY data.
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